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Multireference configuration interaction (MRCI) calculations of the Born-Oppenheimer diagonal correction
(BODC) for H3 were performed at 1397 symmetry-unique configurations using the Handy-Yamaguchi-Schaefer
approach; isotopic substitution leads to 4041 symmetry-unique configurations for the DH2 mass combination.
These results were then fit to a functional form that permits calculation of the BODC for any combination of
isotopes. Mean unsigned fitting errors on a test grid of configurations not included in the fitting process were
0.14, 0.12, and 0.65 cm-1 for the H3, DH2, and MuH2 isotopomers, respectively. This representation can be
combined with any Born-Oppenheimer potential energy surface (PES) to yield Born-Huang (BH) PESs;
herein, we choose the CCI potential energy surface, the uncertainties of which (∼0.01 kcal/mol) are much
smaller than the magnitude of the BODC. Fortran routines to evaluate these BH surfaces are provided.
Variational transition state theory calculations are presented comparing thermal rate constants for reactions
on the BO and BH surfaces to provide an initial estimate of the significance of the diagonal correction for the
dynamics.

1. Introduction

The H3 system, together with its various isotopologs, is an
important archetype for understanding chemical reactivity, and
the experimental and theoretical study of it has both a storied
history1-7 and an ongoing saga. The Born-Oppenheimer8 (BO)
potential energy surface (PES) for this system is the best
characterized9-11 of any chemical reaction, but in important
cases, non-Born-Oppenheimer effects must be addressed for
theoretical calculations to yield conclusive results; the calcula-
tion of low-temperature thermal rate constants12 is one example
of where the need to address non-BO effects has already been
demonstrated.

At energies well below those of the first excited electronic
state, adiabatic corrections can account for the dominant errors
resulting from the BO approximation. The most common
adiabatic correction consists of adding a Born-Oppenheimer
diagonal correction (BODC) to the BO PES to yield what is
referred to13 as the Born-Huang14 (BH) energy. The BODC,
which is sometimes referred to as a nuclear-motion correction,
is the first-order perturbation correction to the electronic energy
due to the finite mass of the nuclei. In our calculations, it is
calculated as 〈Ψi|TN|Ψi〉, where TN is the nuclear kinetic energy
operator in space-fixed Cartesian coordinates and |Ψi〉 denotes
a BO electronic state. In contrast to the BO surface, the BH
surfaces are mass-dependent; the functional representation we
present below yields diagonal corrections for any possible mass
combination.

The BO and BH energies of the ground state are lower and
upper bounds, respectively, on the exact ground-state energy
(as well as any other adiabatic approximation). Other,15-17 and
arguably better, adiabatic approximations exist, with the minimal
adiabatic approximation16 (MAA) of Golden being especially
noteworthy from a formal perspective (MAA surfaces do not
exhibit conical intersections or geometric phase effects), but
these approximations are significantly harder to calculate and
have not yet been implemented in electronic structure packages.
At configurations with energies well below those of the excited
states, the BH approximation should be significantly more
accurate than the BO approximation, but this is not true
everywhere; for instance, the BH energy is singular at points
of conical intersection and too large near intersection seams.
Another example is in the asymptotic H + H + H region, where
the lowest two electronic states become nearly degenerate. This
near degeneracy leads to an extremely slow approach, with
increasing separation, of the BODC to the asymptotic limit of
three times the H-atom value. Before this limit can be reached
in practice, numerical issues make the computations difficult
because the interactions of the H atoms become so small that
the configuration mixing coefficients are not well determined.
The presence of these features presents a significant challenge
for fitting the BODC to a global functional form. The goal of
the present study is to provide a functional representation that
will yield accurate adiabatic corrections for all regions of the
PES that are accessible in calculations for which dynamical
treatments involving only a single electronic state are appropri-
ate. Thus, we do not attempt a globally accurate representation,
which would include regions near the conical intersection seams,
because nonadiabatic effects would then also need to be
addressed, which is a substantially more demanding task.
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We begin by reviewing relevant details of the BO PES and
the diagonal correction in Section 2. In Section 3, we describe
the ab initio calculations and the functional representation
of the diagonal correction. In Section 4, we analyze the fitted
surfaces as well as the BH surface that results when the
correction surface is added to the BO surface, and in Section 5,
we provide some concluding remarks.

2. Background

2.1. BO Surfaces. Several noteworthy analytical PESs10,18-21

have been presented for the H3 system; the most accurate of
these is the CCI PES,10 which was fitted to energies of 4066
configurations that were obtained via a highly accurate many-
body basis set extrapolation9 employing essentially full con-
figuration interaction (FCI) quality (accurate to within ∼1 µEh)
multireference configuration interaction (MRCI) calculations
primarily with data obtained using the aug-cc-pVTZ and aug-
cc-pVQZ basis sets.22,23 The CCI surface is estimated to be
globally accurate to within ∼0.01 kcal/mol, with most of the
remaining uncertainty due to residual errors in the basis set
extrapolation. This PES has a collinear reaction path with a
barrier at R1 ) R2 ) 1.7572 a0 of 9.602 kcal/mol. The most
accurate estimate of the barrier height,10,11 which was obtained
via basis set extrapolations employing basis sets as large as
octuple zeta, is 9.608 kcal/mol (with an absolute energy of
-1.659 165 Eh); the most recent24 quantum Monte Carlo barrier
energy estimate of -1.659 165 Eh ( 1.5 µEh agrees perfectly
with this estimate. Relativistic corrections to the H3 barrier
height have been estimated10 to be only ∼0.05 cm-1.

At D3h (equilateral triangle) configurations with R1 ) R2 )
R3 ) 0.94 a0, the ground and first excited states exhibit a conical
intersection.10 At R1 ) R2 ) R3 ) 0.94 a0, the first three
electronic states are degenerate, and at more compact configura-
tions, the D3h conical intersection seam continues between the
first two excited states. The lowest energy D3h conical intersec-
tion is at R1 ) R2 ) R3 ) 1.97 a0 and lies 2.696 eV above the
H + H2 (Req) zero of energy. The system also exhibits a C2V
conical intersection seam, a portion of which involves the ground
and first excited states and a portion of which involves the first
two excited states,10 but the lowest-energy configuration on this
seam lies more than 10 eV above the H + H2 (Req) zero of
energy, so this seam can be neglected for the present purposes.

2.2. BO Diagonal Correction. The Born-Oppenheimer
approximation begins by writing the Hamiltonian, H, of the
system as

where TN is the nuclear kinetic energy operator given by

where mR is a nuclear mass. One then solves

where Vi
BO is the Born-Oppenheimer PES for state i that

depends only on the nuclear coordinates. The nuclear kinetic
energy operator couples the BO eigenstates so the exact system

cannot be represented by PESs. However, diagonal terms given
by

introduce no nonadiabatic coupling and can be added to the
BO PESs, leading to what are usually referred to13 as
Born-Huang14 surfaces, Vi

BH, where

Because the BODC is mass-dependent, it will be convenient to
represent the BH surface as a sum of two separately fitted
surfaces; in the following, we will choose the CCI PES for the
BO term.

The BODC is a positive definite quantity, and isolated atoms
have significant values (59.7648 cm-1 for a H atom). Thus, the
geometry dependence of the BODC can be much smaller than
its magnitude; for example, at an internuclear separation of R
) 1.40 a0, the BODC of H2 is 114.59 cm-1, which is only 4.94
cm-1 less than the sum of the values for two isolated H atoms.
As the spacing between electronic states decreases, the derivative
couplings and, thus, the BODC tend to increase. Because
transition states tend to occur in the neighborhood of widely
avoided intersections of two quasidiabatic surfaces, one with
reactant bonding character and one with product bonding
character, the BODC tends to be systematically larger at
transition states than at reactants or products. Therefore, there
is a strong tendency for reaction rates to be lower when
calculated on a BH surface than on the associated BO surface.
For H + H2, the barrier-height correction resulting from the
BODC is 0.153 kcal/mol; this is an order of magnitude larger
than the remaining uncertainties of the CCI PES and is
sufficiently large that it must be accounted for in predicting low-
temperature reaction rates.12

3. BODC Analytical Potential

3.1. Ab Initio Benchmarks. Most ab initio calculations of
the BODC for systems larger than two-electron problems have
been limited to implementations at the Hartree-Fock self-
consistent field (SCF) level using either spin-restricted25,26 or
unrestricted27,28 wave functions. Recently, however, numerical
implementations allowing BODC calculations have been pre-
sented that employed multiconfiguration SCF,29 single-reference
configuration interaction (CI),30,31 multireference CI (MRCI),32-35

coupled cluster,31 and first-order (MP1) [note that although the
MP1 correction is zero for the BO energy, it provides a good
estimate of the BODC] and second-order (MP2) Møller-Plesset
perturbation theory methods.28,36

An extensive set of benchmark calculations has already been
presented elsewhere for the BODC at the H3 saddle point11 and
for H2 and H3

+ for a wide range of configurations.11,37-39 Here,
we will concentrate on the level of treatment needed to provide
accurate data across the entire targeted region of the H3 PES.
As discussed previously,11 the BODC is best calculated with
basis sets that include diffuse functions but otherwise, the level
of correlation treatment and basis set sizes needed for accurate
evaluation are significantly less stringent than those required
for the BO energies. The basis set convergence of the BODC
obeys the same 1/lmax

3 dependence,40-43 (where lmax is the largest
angular momentum used in the basis) as the BO energies do,
but the convergence with respect to the degree of radial
completeness is significantly more favorable than that for the

H ) TN + HBO (1)

TN ) -∑
R

p2

2mR
∇ R

2 (2)

HBO|Ψi〉 ) Vi
BO|Ψi〉 i ) 1, 2, 3... (3)

Gii ) 〈Ψi|TN|Ψi〉 (4)

Vi
BH ) Vi

BO + Vi
BODC ) Vi

BO + Gii (5)
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BO energies. The aug-cc-pVTZ basis set22,23 was sufficient to
converge the BODC at the H3 saddle point to within 0.2 cm-1

of the complete basis set limit. The treatment of electron
correlation is also less demanding than for the BO energies,
and MRCI calculations with only a valence reference space were
observed to lie within less than 0.1 cm-1 of the FCI limit at the
H3 saddle point, which is more than 2 orders of magnitude
greater accuracy than such calculations achieve for the BO
correlation energy.

For the calculations presented herein, the BODC will be cal-
culated via the method of Handy et al.26 using a modification29,35

of the internally contracted44,45 MRCI (icMRCI) code of the
MOLPRO suite46 of electronic structure programs. For all the
calculations considered here, the internal contraction scheme
does not lead to any reduction in the number of configurations;
therefore, the results are identical to those of standard MRCI
calculations, and we will drop the “ic” prefix henceforth. We
consider MRCI calculations employing either a valence (3
orbital) reference space, denoted MRCI(3), or an extended (11
orbital) reference space, denoted MRCI(11), where the orbitals
were obtained from complete active space self-consistent field
(CASSCF) calculations with active spaces of 3 and 11 orbitals,
respectively. Prior MRCI(11) calculations11 of the BODC at the
H3 saddle point agreed with FCI calculations to within better
than 0.01 cm-1. The MRCI(11) calculations are similar to those
employed in the calculation of the CCI PES, which were
demonstrated10 to yield results that agreed with FCI calculations
of the BO energy to within better than 1 µEh for a wide range
of configurations, except that those calculations used CI natural
orbitals rather than the CASSCF orbitals employed here. We
use augmented23 correlation consistent22 basis sets of either
triple-� (aug-cc-pVTZ) or quadruple-� (aug-cc-pVQZ) quality
for all the calculations presented here.

In Table 1, we present BODC calculations at a selection of
representative configurations calculated with four levels of
treatment: MRCI(3)/aug-cc-pVTZ, MRCI(11)/aug-cc-pVTZ,
MRCI(3)/aug-cc-pVQZ, and MRCI(11)/ aug-cc-pVQZ (the cost
ratios of these treatments are approximately 1:10:17:70, respec-
tively). These results are sorted in increasing order on the basis
of the magnitude of the BO energy, as estimated from the CCI
PES, which is also tabulated. The data calculated with the aug-
cc-pVTZ basis set agree with those calculated with the aug-
cc-pVQZ basis set to within less than 0.8 cm-1, and the
agreement is best for the low-energy configurations. Addition-
ally, FCI/aug-cc-pVTZ calculations of the H2 BODC agree with
the accurate results of Wolniewicz37 to within 0.23 cm-1 for R
) 1.2 a0, but the level of agreement worsens to 0.43, 0.68, and
1.37 cm-1 at 1.1, 1.0, and 0.8 a0, respectively. Prior benchmark
calculations11 suggest that the basis-set-incompleteness error at
the aug-cc-pVQZ basis is quite small (<0.1 cm-1 at the H3 saddle
point); thus, the aug-cc-pVTZ H3 BODC calculations for
configurations where all H-H distances exceed 1.2 a0 seem to
typically be within ∼0.3 cm-1 of the complete basis set limit.
For configurations where the BO energy is below 2 eV (with
the zero of energy taken as one H infinitely separated from H2

at its equilibrium separation), the MRCI(3) BODC calculations
agree with the MRCI(11) calculations (which are expected to
be tantamount to FCI for the BODC) to within 0.3 cm-1;
however, for high-energy configurations, especially those near
the conical intersection seams, the CI error of the MRCI(3)
calculations can be several cm-1. The benchmark calculations
suggest, however, that even the MRCI(3)/aug-cc-pVTZ treat-
ment is sufficiently accurate for our needs, especially in the
lower-energy regions of the PES that we are primarily targeting,

and we adopt it for the calculation of the data used to fit the
BODC surface.

Nuclear masses are used in the calculations and are obtained
by subtracting 1 me from the atomic masses (in a.u.) of 1837.153,
3671.483, 5497.921, and 207.768, for H, D, T, and Mu (i.e.,
muonium), respectively. We note that some authors47 have
advocated using atomic masses in place of the nuclear ones in
an attempt to obtain heuristic improvements beyond those of
the BH approximation, so care must be taken when comparing
results from different groups. Several units of energy are used
in this article, and interconversion is achieved using 1 Eh )
27.211 396 1 eV ) 627.5096 kcal/mol ) 219 474.7 cm-1; for
convenience we note here that 1 cm-1 ∼ 0.0029 kcal/mol ∼4.6
µEh.

3.2. Functional form. The BODC for any isotopomer of H3

can be simply expressed via

where R1 is the distance between masses m1 and m2, R2 is the distance
between masses m2 and m3, and R3 is the distance between masses
m1 and m3. Rather than fitting the Ai directly, we instead choose to fit
a BODC potential for the DHH mass combination and obtain the Ai

values from this potential by solving

By symmetry, we have

thus, the BODC for any other mass combination can be calculated
from three evaluations of our fit for the special case of DHH by using
eqs 6-8.

For convenience, we choose to fit the DHH BODC potential
using a many body expansion

The one-body term, V0, is equal to the sum of the BODC for
the three isolated atoms. The H-atom BODC obtained with the
aug-cc-pVTZ basis set is 59.6818 cm-1, which can be compared
to the exact value of (p2/2mH) ) 59.7648 cm-1. The HH two-
body potential was fit to an extended Rydberg potential,48

and two-body interactions for other mass combinations can be
obtained via

Vm1m2m3(R1, R2, R3) ) ∑
i)1

3 Ai(R1, R2, R3)

mi
(6)

(1/mD 1/mH 1/mH

1/mH 1/mD 1/mH

1/mH 1/mH 1/mD
)(A1(R1, R2, R3)

A2(R1, R2, R3)
A3(R1, R2, R3)

) ) (VDHH(R1, R2, R3)

VHDH(R1, R2, R3)

VHHD(R1, R2, R3)
)

(7)

VDHH(R1, R2, R3) ) VDHH(R3, R2, R1) ) VHDH(R1, R3, R2) )

VHDH(R2, R3, R1) ) VHHD(R2, R1, R3) ) VHHD(R3, R1, R2) (8)

VDHH(R1, R2, R3) ) V0 + VDH(R1) + VHH(R2) +

VDH(R3) + V3C(R1, R2, R3) (9)

VHH(R) ) exp(-RR) ∑
j)1

14

cjR
j-1 (10)
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The three-body potential was represented as

The S[R] terms49 are given by

where

and symmetry requires that the linear parameters obey

In principle, we could have chosen to have different nonlinear
parameters, �, for the RDH and RHH coordinates, but for the
BODC, this would not have led to an appreciable improvement
in the quality of the fit.

In eq 12, G11
DIM denotes a two-state diatomics in molecules

(DIM) solution50 for the BODC that will be discussed in detail
in the following section, C is a cusp emulating term having the
form

and �(R1, R2, R3) is an analytic cutoff function designed to
smoothly zero out the three-body potential in regions that are
outside the domain of validity of the fit. This cutoff function is
given by

where

and

The s variable is a symmetry variable discussed elsewhere;19,51

the BODC has a pole of order 4 in s at D3h conical intersections,
and using this variable in eq 17 is a convenient way to damp
out the three-body potential near this intersection seam. The
cutoff parameter values were chosen to be δRsum ) 3.3 a0, δR )
0.72 a0, δs ) 0.25 a0, FR ) 0.02 a0, and Fs ) 0.01 a0.

3.3. DIM Solution. In 1985, Garrett and Truhlar presented50

a two-state DIM approximation for the BODC of a triatomic
system. This approximation goes to a constant in each of the
atom plus diatom limits (in the case of isotopomers of H3, it
goes to 0 in each arrangement), so it is not appropriate for a
globally accurate representation of the BODC. Nevertheless, it
has some qualitatively correct features in the strong interaction
regime (it also permitted semiquantitative predictions of barrier
height corrections resulting from the diagonal correction); thus,
it is a convenient shape function to use as part of the functional
form for the three-body component of our fitted BODC PES.
In the original presentation, the DIM approximation was
evaluated numerically via finite differences, but in the present
work, we adopt an analytical evaluation.

The DIM Hamiltonian can be written50

with

TABLE 1: Benchmark BODC Calculations (in cm-1) at Selected Levels of Theory

R1 (a0) R2 (a0) θ BO energy (eV)a MRCI(3)/ aug-cc-pVTZ MRCI(11)/ aug-cc-pVTZ MRCI(3)/ aug-cc-pVQZ MRCI(11)/ aug-cc-pVQZ

1.4 4.0 180 0.0228 174.73 174.75 174.87 174.89
1.2 5.0 120 0.2633 181.20 181.20 181.58 181.58
1.757 1.757 180 0.4164 227.82 227.78 227.88 227.83
1.6 2.4 120 0.5048 194.06 194.15 194.09 194.17
1.8 2.4 90 1.0762 203.31 203.37 203.33 203.37
1.4 1.4 120 1.6407 252.97 252.73 253.14 252.89
1.0 2.8 80 1.9217 197.59 197.68 198.35 198.45
1.4 1.4 90 2.4004 342.81 341.39 343.04 341.55
2.8 2.8 90 2.6206 253.71 253.52 253.57 253.36
1.2 1.2 180 2.9153 257.43 257.06 258.11 257.72
1.2 1.4 90 3.2004 346.72 345.41 347.19 345.78
1.2 1.2 120 3.3863 285.64 284.59 286.36 285.28
1.2 1.2 100 3.8585 346.40 343.06 347.19 343.80

a Calculated with the CCI PES and relative to a zero of energy of H + H2 (Req).

Vm1m2(R) )
mH

2 ( 1
m1

+ 1
m2

)VHH(R) (11)

V3C(R1, R2, R3) ) �[S[1] + CS[2] + G11
DIMS[3]] (12)

S[R](R1, R2, R3) ) ∑
i,j,k)0

i+j+k*max(i,j,k)

i+j+k)11

cijk
[R]�1

i (R1) �2
j (R2) �3

k(R3)

(13)

�i(Ri) ) Ri exp(-�Ri) (14)

cijk
[R] ) ckji

[R] (15)

C(R1, R2, R3) )

√ε2 + (R1 - R2)
2 + (R1 - R3)

2 + (R2 - R3)
2 (16)

�(R1, R2, R3) )

{ 0 s e δs or Rsum e δRsum
or Ri e δR for any i

exp ( FR

δRsum
- Rsum

+
FR

δR - R1
+

FR

δR - R2
+

FR

δR - R3
+

FR

δs - s
); otherwise

(17)

Rsum ) R1 + R2 + R3 (18)

s )
√(2R1

2 - R2
2 - R3

2)2 + 3(R2
2 - R3

2)2

(R1
2 + R2

2 + R3
2)

(19)

HDIM ) [H11 H12

H21 H22
] (20)
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and

where VS
XY and VT

XY are, respectively, the singlet and triplet
potentials of diatom XY, and DYZ is the equilibrium dissociation
energy of diatom XY. The eigenvalues of HDIM are

and

and the eigenvectors are

and

The two-state DIM BODC is given by

and can be rewritten as a function of the derivative couplings
via

where xij is the jth Cartesian coordinate of atom i. These
expressions can then be transformed into more-convenient
expressions given in internal coordinates

where θij is the included angle associated with Ri and Rj, and

Herein, we adopt the DIM parametrization used previously;50,52

in particular, the singlet potential is represented as a Morse
function,

where

and the triplet is represented by

where the ∆ij are Sato parameters chosen as 0.132, Re is the
equilibrium distance (0.741 287 1 a0), and the Dij are 109.4583
kcal/mol. A plot of the DIM BODC for collinear H + H2 is
given in Figure 1.

3.4. Data and Fitting. The electronic structure calculations
directly yield the Ai values of eq 6, so in selecting configurations
at which to evaluate data, we can use permutational symmetry
to limit consideration to R1 e R2 e R3. The primary set of data
points was selected by choosing R1 and R2 from among {0.8,
1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.4, 2.8, 3.4, 4.0, 4.6, 5.0, and 5.5
a0} and θ from among {180, 170, 160, 150, 140, 130, 120, 110,
100, 90, and 80°}; only points with R1 e R2 e R3, R1 + R2 +

H11 ) DYZ + VS
YZ + (VS

XY + VS
XZ)/4 + 3(VT

XY + VT
XZ)/4

(21)

H22 ) DYZ + 3(VS
XY + VS

XZ)/4 + VT
YZ + (VT

XY + VT
XZ)/4

(22)

H12 ) H21 ) √3(VS
XY - VS

XZ + VT
XZ - VT

XY)/4 (23)

V1
DIM ) 1

2
(H11 + H22) - �(H11 - H22

2 )2

+ H12
2

(24)

V2
DIM ) 1

2
(H11 + H22) + �(H11 - H22

2 )2

+ H12
2

(25)

|Ψ1〉 ) (�1
2
+

(H22 - H11)

4�(H22 - H11

2 )2

+ H12
2

�1
2
-

(H22 - H11)

4�(H22 - H11

2 )2

+ H12
2

) (26)

|Ψ2〉 ) (-�1
2
-

(H22 - H11)

4�(H22 - H11

2 )2

+ H12
2

�1
2
+

(H22 - H11)

4�(H22 - H11

2 )2

+ H12
2

) (27)

G11
DIM ) ∑

i)A,B,C

-p2

2mi
〈Ψ1|∇ i

2|Ψ1〉)∑
i

G11
DIM,mi (28)

G11
DIM,mi ) -p2

2mi
∑
j)1

3

〈Ψ1|
∂

∂xij
|Ψ2〉 〈 Ψ2|

∂

∂xij
|Ψ1〉

) -p2

2mi
∑
j)1

3

[f 12
(ij)]2 (29)

G11
DIM,mA ) p2

2mA
(f̃ 12

(1)f̃ 12
(1) + 2 cos(θ13) f̃ 12

(1)f̃ 12
(3) + f̃ 12

(3)f̃ 12
(3))
(30)

G11
DIM,mB ) p2

2mB
(f̃ 12

(1)f̃ 12
(1) + 2 cos(θ12) f̃ 12

(1)f̃ 12
(2) + f̃ 12

(2)f̃ 12
(2))

(31)

G11
DIM,mC ) p2

2mC
(f̃ 12

(2)f̃ 12
(2) + 2 cos(θ23) f̃ 12

(2)f̃ 12
(3) + f̃ 12

(3)f̃ 12
(3))

(32)

f̃ 12
(i) ) 〈Ψ1|

∂

∂Ri
|Ψ2〉 )

sign(H12)

(H22 - H11)
2 + 4H12

2
×

(H12

∂(H22 - H11)

∂Ri
- (H22 - H11)

∂H12

∂Ri
) (33)

VS
ij ) Dij(y2 - 2y) (34)

y ) exp[-κij(Rij - Rij
e)] (35)

VT
ij )

(1 - ∆ij)

(1 + ∆ij)
Dij(y2 + 2y)/2 (36)
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R3 e 3.6 a0, and R1 e 2.8 a0 were retained. More points were
added in the “compact” region with R1 chosen from {1.1, 1.3,
1.5, 1.7, 1.9 a0}, R2 chosen from {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 1.9, 2.0 a0}, and with θ choices and constraints as
above. An additional 120 points were chosen along the collinear
minimum energy path of the CCI PES with R1 ranging from
0.76 to 2.95 a0 in increments of 0.01 a0, and finally, 10
symmetric collinear points near the saddle point were chosen
with R1 ranging from 1.70 to 1.79 a0 in increments of 0.01 a0.
This resulted in a set of 1397 configurations at which electronic
structure calculations were performed.

The use of permutational symmetry with the calculated ab
initio data leads to 4041 symmetry-unique BODC values for
the DHH mass combination. The lowest DHH BODC value
within this set was 131.66 cm-1; 3315 points had values below
200 cm-1, 656 fell within 200-300 cm-1, 52 fell within
300-400 cm-1, 11 fell within 400-500 cm-1, and 7 points had
values exceeding 500 cm-1. These last 7 points were excluded
from the fitting process.

BODC calculations were also performed on a supplementary
set of configurations that were not used in the fitting process so
that the quality of the fitted surface could be rigorously assessed.
Configurations were selected with R1 and R2 chosen from {1.15,
1.35, 1.55, 1.75, 1.95, 2.2, 2.6, 3.1, 3.7, 4.3, 4.8 a0}, θ chosen
from {175, 155, 135, 115, 95°}, and subject to the constraints
of R1 e 2.8 a0 and R1 e R2 e R3. This results in a set of 280
symmetry-unique configurations for H3 and 805 configurations
for DHH.

For the HH potential, a total of 200 FCI/aug-cc-pVTZ
calculations of the BODC were used in the fitting, and the
resulting mean unsigned and worst errors were 0.0017 and
0.0036 cm-1, respectively. A comparison of the ab initio data,
the fitted curve, and accurate results37 is shown in Figure 2.
The agreement between the aug-cc-pVTZ values and the
accurate results is excellent except at very small internuclear
separations, with the error at 0.6 a0 being about 2 cm-1.

The least-squares fit of the DHH three-body potential involved
540 linear parameters and 1 nonlinear parameter (the various
parameters of the damping function were not simultaneously
optimized). As the single nonlinear parameter was varied, the
linear parameters were optimized by a call to a linear least-
squares routine (which has a deterministic solution); this greatly
simplifies the fitting process compared to doing a full nonlinear
optimization, and guarantees an optimal result. The observed
mean unsigned deviations (MUD), root-mean-square deviations
(RMSD), and worst deviations evaluated on the set of configu-
rations used in the fitting process are given in Table 2 for
diagonal corrections of various isotopomers. The observed
uncertainties are all quite low, although the values are larger
for the MuH2 isotopomer than for the other cases.

Measures of quality based only on the configurations used
in the fitting process are notorious for underestimating the true

Figure 1. A contour plot of the DIM BODC for the collinear H + H2

reaction. The contours start at 0.02 kcal/mol and have increments of
0.02 kcal/mol.

Figure 2. A comparison of the FCI/aug-cc-pVTZ BODC calculations
for H2, the two-body fit of eq 10, and the accurate values of Wolniewicz.
All data are tabulated relative to the results for two isolated H atoms.

TABLE 2: Mean Unsigned Deviations (MUD), Root Mean
Square Deviations (RMSD), and Worst Deviations Observed
for the BODC of Various Isotopomers on the Set of
Configurations Used in the Fitting Processa

system subset no. points MUD RMSD worst deviation

DH2 all 4034 0.069 0.114 1.50
DH2 EBO < 2 eV 2900 0.052 0.074 0.47
H3 all 1394 0.083 0.141 1.56
H3 EBO < 2 eV 999 0.063 0.089 0.51
MuH2 all 4034 0.409 0.720 13.06
MuH2 EBO < 2 eV 2900 0.299 0.436 3.06

a Data are tabulated for the full set as well as for the subset of
configurations where the BO energy (calculated with the CCI PES)
is less than 2 eV above the H + H2 (Req) zero of energy. All values
are in cm-1.

TABLE 3: Mean Unsigned Deviations (MUD), Root Mean
Square Deviations (RMSD), and Worst Deviations Observed
for the BODC of Various Isotopomers on a Test Set of
Configurations Not Used in the Fitting Processa

system subset no. points MUD RMSD worst deviation

DH2 all 805 0.120 0.230 1.70
DH2 EBO < 2 eV 700 0.098 0.155 0.69
H3 all 280 0.144 0.275 1.94
H3 EBO < 2 eV 242 0.118 0.189 0.78
MuH2 all 805 0.645 1.138 8.72
MuH2 EBO < 2 eV 700 0.539 0.823 4.34

a Data is tabulated for the full set as well as for the subset of
configurations where the BO energy is less than 2 eV (calculated
with the CCI PES) above the H + H2(Req) zero of energy. All
values are in cm-1.
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uncertainties of the fitted surfaces. Such uncertainty underes-
timation, which can be quite dramatic, occurs whenever the
system of equations solved during the optimization is ill
determined; this is an especially serious concern when a large
number of parameters are optimized. To confirm the quality of
the fit, we also evaluated MUD, RMSD, and worst deviations
for the test set of configurations not used during the fitting
process, and these results are shown in Table 3. The MUDs
and RMSDs observed on this test set are no worse than a factor
of 2.1 times larger than those observed for the set of fitting
data, and this confirms the high accuracy of the fitting process.

4. Analysis and Discussion

A set of contour plots for the final fitted diagonal corrections
as functions of R1 and R2 for specific values of the included

angle, θ, are displayed in Figure 3 for the DH2, H3, and MuH2

isotopomers. The zero of energy of these plots is set to that of
the minimum BODC at the D (or H or Mu) + H2 asymptote,
which occurs at R2 ) 2.318 a0; this can be contrasted with the
equilibrium separation of H2 on either the BO or BH surfaces,
both of which occur at R2 ) 1.401 a0. When examining these
plots, it is important to remember that they are not accurate
when approaching the H + H + H limit where the ab initio
BODC displays an extremely long-ranged interaction, whereas
the fitted potentials have been damped to more rapidly approach
the sum of the atomic BODC values. In Figure 4 the H3 ab
initio and fitted diagonal corrections along the collinear sym-
metric stretch are plotted to indicate the effect of the damping
as the H + H + H limit is approached.

Figure 3. Contour plots of the BODC relative to the minimum diagonal correction at the X + H2 asymptote for DHH, HHH, and MuHH. Distances
are in Bohr and contours are in kcal/mol. For H3 and DH2, the contour lines are multiples of 0.02 kcal/mol, except for 0.005 and 0.01; for MuH2,
the contour lines are multiples of 0.04 kcal/mol, except for 0.01 and 0.02. (a) DHH at θ ) 180°, (b) DHH at θ ) 150°, (c) DHH at θ ) 120°, (d)
H3 at θ ) 180°, (e) H3 at θ ) 150°, (f) H3 at θ ) 120°, (g) MuHH at θ ) 180°, (h) MuHH at θ ) 150°, and (i) MuHH at θ ) 120°.
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Perhaps the most striking feature observed in the H3 and DH2

contour plots of Figure 3 is that the BODC is large primarily
in the strong interaction region; thus, it will have a significant
effect on the barrier heights, which will influence the thermal
rate constants, but will have less influence on other aspects of
the dynamics. A convenient way to measure the effect of the
BODC on inelastic scattering is to expand the BH potential,
where the BO component is represented by the CCI PES, in a
Legendre expansion

where Jacobi coordinates are used; that is, r is the magnitude
of the vector r that connects mass m2 to mass m3, R is the
magnitude of the vector R connecting m1 to the center of mass

of diatom m2-m3, and γ is the angle between r and R. Low-
energy inelastic scattering is sensitive to the shape of the first
anisotropic expansion coefficient, V2(R, r). Figure 5 compares
the behavior of V2(R, r) at r ) 1.4 a0 for the BO potential and
for a selection of BH surfaces. The influence of the BODC on
the potential anisotropy is observed to be quite modest.

In Table 4, we compare the saddle point properties of the
fitted BH surfaces obtained by combining the new BODC
representation with the BO CCI PES to the best available ab
initio results; that is, the previously published11 MRCI(11)/aug-
cc-pV5Z//MRCI(3)/aug-cc-pVTZ BODC calculations combined
with BO energies predicted via the CCI PES. The agreement is
extremely good in all cases. We note that much of the remaining
small differences observed in the barrier heights is due to

Figure 4. BODC (in kcal/mol) for H3 along the collinear symmetric
stretch relative to H + H2 (Rmin

BODC). The ab initio data are ill-behaved
in the H + H + H limit, whereas the fitted functional representation is
damped so that it goes to 3 times the atomic BODC.

Figure 5. A comparison of the long-range behavior of the first anisotropic Legendre expansion coefficient for r ) 1.40 a0 for the BO PES and for
various isotopomers on the BH PES: (a) 1.8 a0 < R < 3.0 a0 and (b) 3.0 < R < 6.0 a0.

V(R, r, γ) ) ∑
n)0

V2n(R, r)P2n(cos γ) (37)

Figure 6. Values of the A-B distance (R1) and B-C distance (R2)
along the reaction paths on the BH surfaces are denoted by lines for
the D + H2 (s) and Mu + H2 (- - -) reactions. Reaction path geometries
on the BO (CCI) surface are denoted by symbols for the D + H2 (O)
and Mu + H2 (0) reactions. The solid square (9) denotes the saddle
point for the BO surface, which is mass independent. The saddle points
for the D + H2 and Mu + H2 reactions on the BH surfaces are denoted
by plus signs (+). The saddle point for the Mu + H2 reaction is furthest
from the saddle point on the BO surface.
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differences between the ab initio treatments used for the fitted
data and the benchmark calculations rather than to fitting errors
(for example, the MRCI(11)/aug-cc-pV5Z saddle point correc-
tion is about 0.15 cm-1 lower than the result predicted by the
MRCI(3)/aug-cc-pVTZ results).

We employed variational transition state theory (VTST) with
multidimensional tunneling corrections53 to provide a first
estimate of the importance of the diagonal correction on rate
constants for the D + H2, H + H2, and Mu + H2 reactions.
The calculations were performed using the ABCRATE code.53

A general description of VTST for calculations of reaction rates
in triatomic systems with collinear reaction paths is given
elsewhere.54,55 Specifically, we used the improved canonical

variation theory,56 in which eigenvalues of the stretch mode
(describing motion perpendicular to the reaction path) are
computed by a WKB approximation,57 and energy levels for
the doubly degenerate bends are computed by the centrifugal
oscillator approximation,58,59 where the bend potential is fitted
to a harmonic-quartic potential.60 Quantum corrections for
reaction coordinate motion are included by a multiplicative
transmission coefficient that is computed from a normalized
Boltzmann average of semiclassical tunneling probabilities.61

The tunneling probabilities were computed using the least-action
ground-state method.62

The collinear reaction paths for the BO and BH surfaces near
the saddle points are displayed in Figure 6. The computed rate
constants for the D + H2, H + H2, and Mu + H2 reactions on
the BH surface are displayed in Figure 7. For each reaction,
we also show the ratio of the rate constant on the BO surface
with that for the BH surface. The rate constants for D + H2

and H + H2 are similar, and the ratio of BO to BH rate constants
varies from 1.2 to 1.06 over the temperature range 200 to 1000
K for these two reactions. For D + H2, the VTST results are in
good agreement with the results of accurate quantum scattering
calculations12 adjusted with a simple correction for the effect
of the diagonal correction on the barrier; for temperatures above
200 K, the agreement is within 3-14%, whereas the VTST
results are about 50% higher at 200 K. The rate constants for
Mu + H2 are much smaller than those for the other reactions,
and the difference between the BO and BH results are larger.
For example, the BO rate constant is predicted to be about 30%
higher at 400 K. The Mu + H2 system is a challenging system
for VTST, and significant deviations between VTST63 and
quantum mechanical rate constants64 have been observed;
however, the ratios of the BO to BH rate constants are probably
reasonably reliable. Accurate quantum mechanical calculations
for the Mu + H2 rate constants on the BO and BH PESs will
be presented elsewhere.

5. Concluding Remarks

An accurate functional representation for the Born-
Oppenheimer diagonal correction, fitted to data of essentially
complete CI quality, has been presented that allows treatment
of any desired isotopomer of H3. This diagonal correction
surface may be combined with any BO surface to yield
Born-Huang PESs. Fortran routines are provided to facilitate
evaluation of the energies and gradients of the BH surface
obtained by adding the diagonal correction surface to the CCI
PES. Variational transition state theory calculations were also
presented to provide an initial assessment of the importance of
accounting for the diagonal correction in the evaluation of
thermal rate constants.
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Figure 7. Temperature dependence of rate constants (left axis)
computed on the BH surface are shown as lines for the D + H2 (s),
H + H2 (s s s) and Mu + H2 (- - -) reactions. Temperature
dependence of ratios of rate constants computed on the BO surface
and the BH surface (right axis) are shown as symbols for the D + H2

(O), H + H2 (9), and Mu + H2 (2) reactions.

TABLE 4: Comparison of the BH Saddle Point Geometries
(a0), Harmonic Frequencies (cm-1), and Changes in the
Barrier Height Due to the Diagonal Correction (cm-1) for
Various Isotopomers As Calculated with the Fitted Potential
Surface and the Best Available Ab Initio Treatment, i.e., the
previously Published11 MRCI(11)/aug-cc-pV5Z//MRCI(3)/
aug-cc-pVTZ calculationsa

system method R1 R2 ωsym ωbend ωasym/i ∆barrier

HHH surface 1.7573 1.7573 2053 876 1533 53.70
ab initioa 1.7573 1.7573 2053 876 1534 53.57

DDD surface 1.7573 1.7573 1452 620 1074 26.86
ab initioa 1.7572 1.7572 1452 620 1074 26.80

TTT surface 1.7572 1.7572 1186 507 874 17.93
ab initioa 1.7572 1.7572 1186 507 874 17.90

MuMuMu surface 1.7583 1.7583 6128 2570 5245 477.20
ab initioa 1.7581 1.7581 6134 2570 5264 476.14

DHH surface 1.7570 1.7575 1767 839 1452 48.92
ab initioa 1.7569 1.7575 1767 839 1452 48.80

THH surface 1.7568 1.7576 1654 826 1416 47.31
ab initioa 1.7568 1.7576 1654 826 1416 47.21

MuHH surface 1.7626 1.7540 4280 1338 1894 129.29
ab initioa 1.7626 1.7539 4280 1337 1898 128.39

HDD surface 1.7576 1.7570 1765 670 1142 31.64
ab initioa 1.7576 1.7570 1765 670 1143 31.57

MuDD surface 1.7630 1.7537 4080 1212 1376 107.25
ab initioa 1.7630 1.7536 4079 1211 1378 106.33

a Reference 11 a In both cases, the BO energies are determined
with the CCI PES.
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Supporting Information Available: Fortran routines of the
fitted BODC surface interfaced with the CCI BO PES, including
analytical gradients, are provided. This material is available free
of charge via the Internet at http://pubs.acs.org.
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